The term “Fog Computing” was introduced by the Cisco Systems as new model to ease wireless data transfer to distributed devices in the Internet of Things (IoT) network paradigm. Cisco defines Fog Computing as a paradigm that extends Cloud computing and services to the edge of the network. Similar to Cloud, Fog provides data, compute, storage, and application services to end-users. The distinguishing Fog characteristics are its proximity to end-users, its dense geographical distribution, and its support for mobility. Services are hosted at the network edge or even end devices such as set-top-boxes or access points. By doing so, Fog reduces service latency, and improves QoS, resulting in superior user-experience. Fog Computing supports emerging Internet of Everything (IoE) applications that demand real-time/predictable latency (industrial automation, transportation, networks of sensors and actuators). Thanks to its wide geographical distribution the Fog paradigm is well positioned for real time big data and real time analytics. Fog supports densely distributed data collection points, hence adding a fourth axis to the often mentioned Big Data dimensions (volume, variety, and velocity).
Fogging Advantages:
The significant reduction in data movement across the network resulting in reduced congestion, cost and latency, elimination of bottlenecks resulting from centralized computing systems, improved security of encrypted data as it stays closer to the end user reducing exposure to hostile elements and improved scalability arising from virtualized systems.Eliminates the core computing environment, thereby reducing a major block and a point of failure.Improves the security, as data are encoded as it is moved towards the network edge.Edge Computing, in addition to providing sub-second response to end users, it also provides high levels of scalability, reliability and fault tolerance.Consumes less amount of band width.